6 research outputs found

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    Investigation of the Use of Spectral Clustering for the Analysis of Molecular Data

    Get PDF
    Abstract Image Spectral clustering involves placing objects into clusters based on the eigenvectors and eigenvalues of an associated matrix. The technique was first applied to molecular data by Brewer [J. Chem. Inf. Model. 2007, 47, 1727–1733] who demonstrated its use on a very small dataset of 125 COX-2 inhibitors. We have determined suitable parameters for spectral clustering using a wide variety of molecular descriptors and several datasets of a few thousand compounds and compared the results of clustering using a nonoverlapping version of Brewer’s use of Sarker and Boyer’s algorithm with that of Ward’s and k-means clustering. We then replaced the exact eigendecomposition method with two different approximate methods and concluded that Singular Value Decomposition is the most appropriate method for clustering larger compound collections of up to 100 000 compounds. We have also used spectral clustering with the Tversky coefficient to generate two sets of clusters linked by a common set of eigenvalues and have used this novel approach to cluster sets of fragments such as those used in fragment-based drug design

    Social networking sites (SNSs) for effective library services: A look

    No full text
    The usage of social media is increasing day by day. The social networking sites are more powerful media because anybody can share information and give comments openly. The purposes of using different types of social networking sites are for communicate and share information worldwide. Many organizations and companies use social media and take advantage of it. Like that the impact of technological advancement is more on library services. This paper examines how libraries can adopt the social networking sites and will improve the social media skills to help patrons. The study is mainly focused on social media networks such as Facebook, Twitter, Wikis, LinkedIn, Flickr, Delicious, Youtube, Blogging, Library Thing, and Teacher Tube and its application s in libraries
    corecore